YASKAWA

Investor's Guide Business Part

Notes:

- This material is composed mainly of basic contents to promote understanding of Yaskawa for analysts and investors.
- Figures in this document are rounded off and may differ from those in other documents such as financial results.
- The copyright to all materials in this document is held by YASKAWA Electric Corporation. No part of this document may be reproduced or distributed without the prior permission of the copyright holder.

YASKAWA ELECTRIC CORPORATION (TSE6506)

© YASKAWA Electric Corporation

1. Motion Control

1-1. AC servo & controller 1-2. Drives

2. Robotics

3. System Engineering

1. Motion Control

© YASKAWA Electric Corporation

Product Basics

• Motion control product includes "AC servo & controller" and "AC drive".

Main difference is subjects and types of control.

	AC servo & controller	AC drive
Subject of control	Position and speed of motor-driven machines	Rotational speed of motors
Features	 Move exactly and steadily to the commanded position and speed 	 Provide smooth and stable movement by freely changing the speed of rotation Contribute to energy saving by adjusting the speed of rotation and reducing wasted power consumption
Range of use	Narrow : Field where high speed and precision are required	Wide : Life related, industrial equipment, etc.
Application	Machine tool Semiconductor production equipment Industrial robots	Elevator Air conditioning fan

Revenue / Operating Profit (Motion Control)

Note1: Data up to FY2017 are based on Japanese GAAP.

Note2: The Company changed its accounting period starting FY2017 from March 20 to the last day of February. As a transitional year for this change, FY2017 was from March 21, 2017 to February 28, 2018.

Note3: Revisions were made to the division of businesses segments starting FY2017. The PV inverter business, which was previously included in Motion Control, is included in System Engineering. Figures and profit ratios of each segment for FY2016 reflect this change. The change is not applied to figures and profit ratios for the period up until FY2015.
 Note4: Revisions were made to the division of businesses segments starting FY2020. The high voltage AC drives, which was previously included in System Engineering, is included in Motion Control. Figures and profit ratios of each segment for FY2019 reflect this change. The change is not applied to figures and profit ratios for the period up until FY2018.
 Note5: From FY2024, we revised the segment classification of PV inverter, which had been included in the System Engineering segment, to be included in the Motion Control segment.

Figures for FY2023 are also presented based on the revised information.

1-1. AC servo & controller

© YASKAWA Electric Corporation

Product Basics (1/3)

What is an AC servo drive?

An automatic controller consisting of a servo amplifier and a servo motor that follows the target level indicated by the controller

The purpose is to improve equipment performance and stabilize quality through highly accurate position, speed and torque control.

YASKAWA

Product Basics (2/3)

What is a controller?

A control equipment that controls AC servo drives, AC drives, and robots, etc.

Product Basics (3/3)

Flowchart of machine controller (MP Series)

Receive signals from touch panels to control AC servo drives, AC drives, and robots, etc.

Applications and Market

Machines for semiconductor, LCD & electronic component

- Semiconductor manufacturing Equipment
- LCD manufacturing equipment
- Electronic component processing and assembly equipment

Supports motion control for various applications

General industrial machines

- Metal processing machine Printing machine
- Wood processing machine Textile machine
- Resin molding machine Papermaking
- Food processing machine
- Packaging and filling machine
- Logistics and transportation equipment

Machine tools

- NC lathe
- Machining center
- Milling machine
- Grinder

Robots

- Industrial robot
- Clean transfer robot
- Vacuum transfer robot

YASKAWA © YASKAWA Electric Corporation

Product Lineup

Wide lineup to accommodate to various applications

YASKAWA © YASKAWA Electric Corporation

Revenue Breakdown by Region and Application, Market Share

- metal processing, press machine and robots
- Other (Packaging,textile,injection molding,etc.)

Total Shipment

New Product Features (1/3)

Features of Σ -X Series – Improvement of motion performance

Maximum motor rotation speed

The maximum rotation speed of the motor has increased from the earlier value of 6,000 min⁻¹ to 7,000 min⁻¹.

Applicable models: All SGMXJ and SGMXA models

Equipped with a high-resolution 26-bit encoder

The resolution * of the encoder has been increased to 26 bits, four times that of the earlier model.

24 bits of encoder resolution is position precision resolving 1 revolution of a motor to 67 million pulses

Speed frequency response

Speed frequency response has changed from 3.1 kHz for the earlier model to 3.5 kHz. Maximizing the following performance for the speed reference improves equipment productivity.

Improved control precision and smoothness

Smoother drive is possible from a more effective speed ripple compensation algorithm for cogging compensation. This helps reduce inconsistency in equipment machining precision and quality.

New Product Features (2/3)

Features of Σ -X Series –Sensing and use of data

The servomotor acts as a sensor and collects various data. It can be used for preventive maintenance of equipment.

Life Monitor Avent/2001A

 Σ -X uses the servomotor as a sensor to sense and monitor the parts used by the servo and the servo's installation environment. This can be useful for accurately determining maintenance periods and for preventing sudden failures.

Sensing Items

Encoder Power-on Time Encoder Supply Voltage Encoder Battery Voltage Motor Rotation Count Maintenance Prediction Monitor: Bearing Maintenance Prediction Monitor: Oil Seal Acceleration Sensor Monitor

 Σ_{f}^{7}

Estimated External Disturbance Torque Number of Serial Encoder Communications Errors Settling Time Amount of Overshoot Residual Vibration Frequency Estimated Vibration Maximum Value of Accumulated Load Ratio Number of MECHATROLINK Communications Errors Margin until Overload Temperature Margin until Servomotor Overheats Both installation environment information and the service life of parts used by the servo can be monitored.

SERVOPACK		Servomotor		
Environment Monitor		Environment Monitor		
Installation Environment	Good(59%)	Installation Environment	Good(46%)	
Overheat Margin	Good(55°C) New	Overheat Margin	Good(59°C)	
Main Circuit Power-on Time	1hr52min52sec	Encoder Power-on Time	130hr24min34sec	Ne
Number of Serial Encoder Communications Errors 0[times]		Motor Rotation Count	10300[rotations]	Ne
Number of MECHATROLINK	0[00003]	Encoder Supply Voltage	5.1[V]	Ne
Communications Errors	0[times]	Encoder Battery Voltage	0.0[V]	Ne
Life Monitor		Maintenance Prediction Me	New	
Built-in Fan		Bearing	99,999	
Capacitor	99.99%	Oil Seal		
Surge Prevention Circuit	99.98%			
Dynamic Brake Circuit	99,09%			

New Product Features (3/3)

① Controller controlling cells

Cells : A connected equipment where data relatedness exists e.g.) Facilities composing devices or/and industrial robots etc. and working on common tasks

② <u>A controller that enables to</u> <u>integrate equipment, robots, and data</u> <u>and turn data into movement</u>

• Real-time understanding of the status of an entire cell by acquiring **synchronized data** of equipment and robots is possible. **The results of analysis** of the acquired data **are fed back to the entire cell** as "data" and "motion" to realize automation of manufacturing (stable operation, stable quality, and process improvement).

Products realizing i³-Mechatronics

- Products realizing i³-Mechatronics enable the collection and use of time-aligned data
- While Σ-X enables the acquisition of small amounts of data at a high frequency of µs, YASKAWA Cockpit and YRM controller enable the collection and analysis of large amounts of data in seconds and use them for feedback.

(Reference) Application of AC servo & controller

Semiconductor production equipment

Structure of die bonder

Metal processing machine

Injection molding machine

1-2. Drives

© YASKAWA Electric Corporation

Product Basics (1/3)

What is an AC drive?

Device for controlling rotation speed by changing voltage and frequency supplied to motor

Product Basics (2/3)

Product Basics (3/3)

The reason AC drives are needed

Motor takes about half of the world's electric power consumption

High

Efficiency

Low

High efficiency motors require AC drives **Efficiency Classified**

Global regulations have accelerated the high efficiency-oriented needs towards motors

Refer to "Trends in Overseas Efficiency" published by JEMA (The Japan Electrical Manufacturers' Association) (Oct, 2020)

Motor Type

IE5 Ultra Premium High Efficiency Motor	Permanent magnet motors, Magnet-assisted Synchronous reluctance motor	-	
IE4 Super Premium High Efficiency Motor	Permanent magnet motors, Magnet-assisted Synchronous reluctance motor	AC drives s required	
IE3 Premium High Efficiency Motor	Permanent magnet motors, Synchronous reluctance motors	J	
IE2 High Efficiency Motor		_ AC drives required	
IE1 Standard Motor	Induction motors	in EU	

Applications and Market

- Air conditioning system
- Fan/pump
- Compressor
- Vacuum pump

AC drive/PM motor

Supports motion control for broad applications

General industrial machine

- Metal processing machine Food machine
- Wood processing machine Textile machine
- Resin molding machine - Chemical machine
- Papermaking and printing machines
- Packaging and filling machines
- Environment-related machine
- Life-related machine

Conveyance machine

- Conveyor
- Crane
- Hoisting machine
- Multistory parking garage

Lift

- Elevator
- Escalator
- Light lift
- Automated warehouse

Product Lineup

Develop lineup for application-specific products, including power supply regeneration and vibration suppression functions

Revenue Breakdown by Region and Application, Market Share

Features of Yaskawa's products (1/4)

Features of Yaskawa's products (2/4)

Energy-saving initiatives 1

Selling **PM motor** achieving high-efficiency, energy-saving operation when used in combination with AC drives

<u>Lineup</u>

Eco PM motor flat type

- Achieving the highest (IE5) efficiency of the five efficiency classes
- •Contributing to space-saving, resource-saving, and energy-saving by significant reduction of motor length
- Decreasing noise level by reduction of fans

IPM motor SS7

- •Realizing the high efficiency which is nearly the second highest (IE4) of the five efficiency classes
- Compact and lightweight, contributing to resource conservation

<u>Comparison of efficiency between IPM motor</u> SS7 and general induction motor

Features of Yaskawa's products (3/4)

Energy-saving initiatives 2

Save energy by reusing the regenerative energy

Regenerative energy

- Energy generated by the motor
- When the crane lowers the load, the weight of the load rotates the motor and generates energy.

Low Harmonics Regenerative Matrix Converter U1000

 Return the regenerative energy which was conventionally discarded as heat to the power supply and reuse

Features of Yaskawa's products (4/4)

PV inverter for solar power generation*

Supporting a wide range systems, from self-use and low-voltage grid connection less than 50kW to mega solar.

YASKAWA © YASKAWA Electric Corporation

(Reference) Application of AC drives

Cranes

Fans

Pumps

Automated warehouse

2. Robotics

© YASKAWA Electric Corporation

Product Basics (1/2)

Product Basics (2/2)

(e.g.: YRC 1000 n • The upper control	nicro) with a te ler such as MP	ed in the dedicated robot controller each pendant. controller controls the entire facility program and collecting operation status	data.
Upper controller controls the entire facility	sion nsor MI 100	YRC Omicro Frogram for robot mover	
Customer's equipment			
5	Robot	External axis	

Applications

Pre-inspection process

YASKAWA © YASKAWA Electric Corporation

34

Product Lineup

Note1: Data up to FY2017 are based on Japanese GAAP.

Note2: The Company changed its accounting period starting FY2017 from March 20 to the last day of February. As a transitional year for this change, FY2017 was from March 21, 2017 to February 28, 2018.

Revenue Breakdown by Region and Application, Market Share

Total Shipment

Yaskawa's Robots (1/4)

Arc welding

An adhesion method by melting base material. It contributes to the automation of parts processing in various industries, including the automotive industry. It increases productivity by expanding flexibility of robot posture and speeding up operation.

AR1440

Spot welding

A welding method in which two steel plates are crimped together, a large electric current is passed through them, and make them high temperature. It is used in automobile body joining

Car production line

Spot welding system

Laser welding

A welding method in which metal is melted and joined by a laser beam.

 Robot controller and laser scanner are fully synchronized.

YASKAWA © YASKAWA Electric Corporation

Handling

Provide wide variation of robots (payload: 0.5 - 600kg) to contribute automation of customers' production line

Handling of tomatoes with small robots MotoMINI

Collaborative

MOTOMAN-HC series is designed to collaborate with human

Realize the cost reduction 1) Elimination of the safety fences by the safe structure and function. 2) Saving spaces because of elimination of safety fences.

Expansion of the applicable area by extensive product lineup

1) Dust & Drip-Proof Specifications 2) Food Specifications 3) High payload type 4) Hand-carry type

Smart functionality

1) Robot teaching can be simplified by the direct teaching function and Smart Pendant.

HC10DTP

(Hand-carry type)

Yaskawa's Robots (3/4)

Picking · Packing · Palletizing

Contributing to automated conveyor system for food, cosmetics and pharmaceuticals

Picking · Packing

Grabbing and lining up items on a conveyor belt and packing them in boxes

Palletizing Placing boxes on a pallet

Painting

- Installing a paint gun and painting cars and small parts
- Explosion-proof for work in an environment with flammable gases

(Painting Car Body) **MPX2600 General Industry** (For medium-size

work piece)

Yaskawa's Robots (4/4)

Bio Medical

Best for automation in Bio-Medical field which requires hygiene control

- Resolve challenges such as manual variations and errors, risk of exposure to powerful drugs, and long routine work
- Use of analytical equipment and containers used by humans

Clean Robot

A wide range of products to meet diverse needs [Clean robot] High speed and reliable clean robot for wafer transfer MU124 MU201 M122 [Vacuum robot] **GEKKO** Adopting a direct-drive **MD124D** system that does not require a speed reducer Surrounding equipment VD31HDA designed for wafer transfer Traverse axis <u>Pre-aligner</u> VD31H0F VS22LDS PVS1130 TL1010

Industry's first adaptive robot **MOTOMAN NEXT series**

Aim

workplace, such as restaurant backyards Automation of "unautomated areas," where workers make judgments and do tasks, such as indefinite state, shape, and size of items, changes in work order, and interruptions.

Heavy-duty workplace, such as logistics warehouses and airport unloading

Hazardous work, such as post-processing at medical sites

Examples

Human-centered

Features of manipulator

Features

Autonomous control unit An autonomous control unit is adopted to make a motion planning and perform based on the recognition and judgment process of the environment and the position data acquired from the sensor.

Optimal motor developed in-house

An optimal motor developed in-house is adopted to enhance its capability to follow commands from the controller (minimize the difference between the commanded position and the actual position).

Open platform 3

The development environment is opened up, so customers and partners utilize their know-how and technologies for robot applications.

New technologies (2/3)

YASKAWA Cell Simulator

- An engineering tool that can provide total support from design to launch, to checking the operation of the entire cell, to analyzing and redesigning the operation in a digital twin.
- It can build a digital twin with high accuracy using environmental data.

Features

1) Cell engineering

From designing to checking the operation all in one place in the virtual environment

2 Cell motion analysis

Analyzing the differences between a real environment and a virtual environment.

3 Cell replanning

Performing the same work as engineering in a real environment by using data from a real environment in a virtual environment.

YASKAWA

Monitoring and control of water supply and sewerage systems

3. System Engineering

Notes :

• From FY2024, we have revised the segment classification of PV inverter to be included in Drives business. Figures for FY2023 are also presented based on the revised information.

Supply of control systems and electrical products for continuous casting facilities

System engineering business

Revenue / Operating Profit (System Engineering)

FY2015 FY2016 FY2017 FY2018 FY2019 FY2020 FY2021 FY2022 FY2023 FY2024

Note1: Data up to FY2017 are based on Japanese GAAP.

- Note2: The Company changed its accounting period starting FY2017 from March 20 to the last day of February. As a transitional year for this change, FY2017 was from March 21, 2017 to February 28, 2018.
- Note3: Revisions were made to the division of businesses segments starting FY2017. The PV inverter business, which was previously included in Motion Control, is included in System Engineering. Figures and profit ratios of each segment for FY2016 reflect this change. The change is not applied to figures and profit ratios for the period up until FY2015. Note4: Revisions were made to the division of businesses segments starting FY2020. The high voltage AC drives, which was previously included in System Engineering, is included
 - in Motion Control. Figures and profit ratios of each segment for FY2019 reflect this change. The change is not applied to figures and profit ratios for the period up until FY2018.

Revenue Breakdown by Region and Application, Market Share

Social system business

Yaskawa supports the advanced operating management and maintenance management of social infrastructure including water treatment plant.

Main target facilities Electric products for water supply and sewerage Waterworks Facility Sewerage Facility Monitoring control Human Machine Interface **CP-540** Power receiving and distribution **Centralized Monitoring Centralized Monitoring** electricity self-generation & Control Facility & Control Facility Medium-voltage 86 ÷.• Enclosed Switchboard System Controller **CP-3550**

Iron & steel business

Contributing to stable continuous operation with high reliability by providing dedicated control systems and electrical equipment that meet the needs of various facilities in steel plants

Key process

Features of the equipment Application features/Yaskawa strengths

Blast furnace	 The process of making hot metal from iron ore Stable operation and long-ter continuous operation under adverse environment are required. 	 100% share of raw material charging control in Japan Stable production of consistent quality pig iron in response to changes in the operating environment High-reliability products and system redundancy enable long-term continuous operation
Continuous casting	 Step of solidifying molten iron from a blast furnace Stable operation is essential because equipment shutdown have a major impact on operations. 	②System redundancy and reliability design for stable operation
Process / cold rolling	 Final process of steel manufacturing process Continuously process connected steel plates (Surfac processing, heat treatment processing, etc.) 	 1 High-precision and high-function line control that makes the most of years of accumulated control technology 2 High-precision control of steel plate speed, tension, slack, etc. by drive system 3 Large number of products delivered in Japan and overseas

Industrial application business

We contribute to the engineering in various industries, including pulp and paper, textiles, rubber and tires, film, metal processing, and plastics industries which we have a lot of experience and reliability, with our outstanding continuous drive technology.

Paper-making control system

System construction examples

Film manufacturing • machining facility control system

Equipment system for synthetic fiber, carbon fiber, and synthetic leather

YASKAWA

© YASKAWA Electric Corporation